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THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF
THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE

ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMEN-
TATION. :
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§1 Introduction.

In the problem of estimating the covariance matrix of a multivariate normal
population the usual estimator is the sample covariance matrix § = A/n where A is
distributed according to the Wishart distribution W(X, n). Although S is unbiased it is
known that the (samplo) characteristic roots of § tend to be more spread out than the
corresponding (populatlon) roots of X. This can be seen as follows. Let ) 1 be the largest

characteristic root of 37 and € be an associated unit characteristic vector, then
(1.1) A\ = ¢' ¢, g'e=1.

&'S¢ is unbiased for X\ since E(E'SE) = ¢'E(8)¢ = ¢/X¢ = ). On the other hand the

largest sample root £; can be written as

(1.2) {1 = max o'Sux;
T'T=1

hence

- _ / ’

(1.3) E(¢) = €(mrlrc1n't“cl x Sa:) > E(¢'S¢) =

See Van der Vaart(1961), Anderson(1963). Similarly for the smallest roots Ap,Zp of 32,8,
respectively, we have &£(¢ p) < Xp. It is these implicit maximizalion and minimization
processes for each observed § that makes the sample roots more spread out than the
population rools. Actually in terms of majorization the following holds: (£(¢)),. R AA)
majorizes (\q,.. s Ap). Sce Chapter 12, Scction E of Marshall and Olkin(1979).

The above consideration suggests that we shrink the sample roots toward a middle
value. This is analogous to the Stein-type estimation of a multivariate normal mean_veclor.
Barlier works along this direction can be found in Stein(1975), Efron and Morris(1976),

Hafl(1977a,b,1979,1980), Eaton(1970), Sugiura and Fujimoto(1982) and others.

Another approach was taken in Stein(1956), James and Stein(1961), Selliah(1964),
and Olkin and Selliah(1977). They are concerned with minimax estimation of the covariance
matrix. Minimax cstimators can be obtained by considering the best invariant estimator
with respect to the triangular group G (the group conqisting of lower triangular matrices
with positive diagonal clements). An unappealing property of these ostunators is that they

depend on the coordinate system.
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In this paper we propose an orthogonally invariant minimax ‘estimator which is
derived from the minimax estimators above by averaging them. The idea of averaging al-
ready appears in Sbéirl(1956) and the specific estimator proposed below is bricfly mentioned

in Eaton(1970) (his formula 3.6). But it seems to have never been studied carefully.

In Section 2 we derive the estimator and study its properties. Details of com-
vputation are given in Section 4. For dimensions 2 and 3 the estimator is given explicitly.
For larger dimensionalities the explicit infegrat;ion involved seems formidable. The Monte
Carlo method is always available, but some good approximation is desirable. In Section 3
we study the risk behavior of the estimator. If the number of degrees of freedom is not
too large compared to the dimensionality, it shows a substantial improvement over the

minimax estimator mentioned above for a wide range of population covariance matrices.

§2 Derivation of the estimator.

Suppose that a symetric p X p random matrix A is distributed according to

W(2,n) and consider the problem of estimating X with the lollowing loss functions:

Ly(%,5) = to(ZZY) — log det( 22~ 1) — p,
(2.1) Le(Z, 3) = (B! — 12,

For these loss functions the best estimators among the scalar multiples of A are
given by Afn, Af/(n+p+1) for Ly, Ly respectively (see I1aff(1980) for example). Although
these cstimators have a constant risk, they are not minimax. Minimax estimators were
obtained by considering the best invariant estimator with respect to G"T'. They are of the

form
(2.2) 3(A) = TDT,

where D = diag(dy,...,d,) and T € G} with TT' = A.
For L,

1

(2.3) n+p+1-—-2

i=1,...,p.
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See Stein(1956), James and Stein(1961). For Ly, d = (di,...,dp)" is given by
(2.4) d=F'f,

where F'= (f;), f = (f:) and

fa=(n+p-2%+ D(n+p—2i+3),
(2.5) Jis=Ffi=n+p—25+1, 1< g,
fi=n+p—2i+1.

See Selliah(1964), Olkin and Selliah(1977).

Note that for L; we have dy < -0 < dp. The same ordering seems to hold
for Ly as well. This causes a rather unpleasant asymmetry of the estimator: the first few
rows and columns become smalle_r compared to others. This asymmetry leads to the idea of
symmetrizing the estimator by averaging over different coordinates. Let I'be an orthogonal
matrix corresponding to a change of orthonormal bases. In the new coordinates A, 3 are

written as IV AT, I'" 2T respectively. We estimate I ST by the above method, namely
- ,
(2.6) I'Sr= DTy,
where
Tr Ty = I'"AT"
Returning to the original coordinates we have
Yr = I'Ty DT'T.

This gives an estimator different from (2.2). Furthermore since the loss functions are fully
invariant, 3 has the same constant minimax risk as 3 . Now let it be a probability
distribution on O(p), the group of p X p orthogonal matrices. Because of the (strict)

convexily of the loss functions we obtain an improved estimator by averaging
(2.7) 3.(A) = / ( )ITpDTp’F'd,u(I).
O(p

Note that 37, is minimax being an improvement over a minimax estimator. Interesting cases

are (i) p: the uniform distribution of permutation matrices, (i) y: the uniform distribution



(Haar measure) on O(p). These cases are briefly mentioned in Stein(1956, formula 4.13),
Eaton(1970, formula 3.8), respectively. See Sharma(1980) too. For this paper we consider

the uniform distribution on O(p) and study the resulting estimator

(2.8) 3o(A) = I'TyDTY'I'dT,
' O(p)

where dI"'= dp(I'). From the invariance property of the uniform measure we have

Lemma 2.1. (Orthogonal invariance of 2":‘0.) For any orthogonal I

(2.9) , Xo(PAT") = I'So(A)I.

Lemma 2.2. If A is diagonal then 3(A) is diagonal.

Proofs are straightforward and omitted. Now let A = I'tAIy' where I is

orthogonal and A is diagonal. Then
(2.10) 35o(A) = Zo(ThATy') = Ly Se(A) !

and )f?o(A) is diagonal. We sce that Xy modifies only the characteristic roots of A, Ifor

nolational convenience we define ¢y,..., ¢, by

(2.11) diag(di(e), - . -, ¢p(a)) = Zo(ding(ay, ..., ap)),

where a = (ey,..., ). We are interested in the behavior of ¢4,...,¢,. We will sce the
shrinking of the roots mentioned in the introduction. Let us look at the simplest case

p=2.

Theorem 2.1. Forp=2

d1(oy, ag) =

oy = o Vo da),
\/—1"'\/ 2 * Va + v,
V oy
dalon,ea) = C¥262———az(\/_1+\/a2 \/—1+\/_2 )

(2.12)

Note that as a1/as approaches co, ¢y~ad;, pa~azds. Now for Ly we have

di =1/(n+1) < 1/n < dg = 1/(n — 1). This shows that if a; > ag then the larger root
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is shrunk and the smaller root is expanded relative to the unbiased case. § = A/n. When
o1 = o2 = a then ¢; = ¢p=a(ds + ds)/2. The shrinking factors ¢y, co change smoothly

between these two cases.

For p = 3 the integration over O(3) is alrcady tedious. We give an infinite series
expression for ¢y, ¢y, d3. Convergence is reasonably fast but the form of the series is not

very revealing. Let (a)z = a(a +1)---(a + %k — 1) and let

Fi(a; b,V; ¢; z, ) i i @t n(B)en (¥)o z"y"

mInl(e)min

be Appell’s hypergeometric function of two variables. Furthermore for convenience let

H(b, 6505, y)=F1(1;6/2,8/2; ¢/2; 7, y).

Theorem 2.2. Letp =3 and 0 < Sal <1, Then

(2.13)
#ill1—a1-p) =Dt h _(bodlorf) d-d 1;5; a, )
| 3 15 3 |
- ﬁ?,% {(u B)PH(3,3;9;3,7) + 36 (1 — BYH(5,3;9; B, 7) + 36%(a — ) (5, 1,9: 3, 7},

where v = (8 — a)/(1 — @),

(2.14)
$2(1,1 —a,1 - g) = (—ll—.}—%g—tig — %(7(11 + 5dg 4 3d3) — %((13 —dy)

- d—2l—05—{3 2H(3, 1;9; o, B) + 20 — B)H(3,3;9; e, B) + 3 — B)2H(3, 5;9; v, B)}

- T(;%;—_‘%j{ma ~ B)2H(1,5;9; B,7) + 30®(L — B)H(3,5;9; 8, 7) + B(L — &)H(3,3;9; 8,7)},
.(2.15) ¢3(1, 1-q,1~ ,8) = (1 - ,@){d\ +dy +d3z— ¢y — (}52/(1 - (Y)}.

Note that these formulas suffices for all cases because the estimator is invariant

with respeet to scale change and permutation of roots.

In order to illustrate how ¢y, da, #3 behave let n = 6,p = 3, d; = 1/(10 — 21),
S = A/n = diag(l, o, B). Values of ¢y, pa, 3 for scveral values of o and B are given as

follows.



a B ¢ $2(c2) $3(c3)
1.0 1.0 1.083 1.083(1.08) 1.083(1.08)

1.0 .7 1.065 1.065(1.07) .783(1.12)
1.0 .5 1.019 1.049(1.05) .576(1.15)
1.0 .1 .976  .976(.98)  .130(1.30)
7.7 1.048  771(1.10)  .771(1.10)
7.5 1.032 .758(1.08)  .567(1.13)
7.1 961 .703(1.00)  .128(1.28)
5 .5 1.016 .559(1.12)  .559(1.12)
5.1 948 .517(1.03)  .127(1.27)
A1 889 .118(1.18)  .118(1.18)

Note that n(d, + d2 + d3)/3 = 1.083 seems to have an overall effect. When this
overall multiplicative constant is taken into account, then the shrinking effect is evident.
Another thing of interest is that the middle root seems Lo be “neutral” having this overall
shirinking factor (1.083) when § & diag(l, @, @?). The casc @ = .7, 8 = .5 in the above

table is illustrative.

For general dimension p, p(p — 1)/2-fold integralion is involved. Although infinite
series expression as in Theorem 2.2 is always possible in principle, it will be complicated
and convergence might be slow. Then a Monte Carlo method can be used. We will discuss
this in Section 3 and Section 4. Here we give a qualitative description of the eslimator.
Note that D can be written as D == d1Ey4 +- - - +dpEy, where E;; has 1 in (7,, i)-th position
and 0 everywhere else. Putting this into (2.8) we sce that ¢y,..., ¢p are linear in dy, ..., d,.

Therefore we can write

(2.16) | di(a) = aie; = ag(windy + -+ +wpdy), i=1,...,p.

Let W(a) = (wy;(a)).

Theorem 2.3. W) is doubly stochastic, namely w;; > 0, 2,' wiy =1, Y} wi; = 1.
Proof: Lel e; denote a vector with 1 as i-th element and 0 everywhere else. Now

pie) = el Xo(diag o)e;,
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hence
QWi = / e,:-ITI'Ej]'T["I"e,;dI‘
O(p)

(2.17) = o) e;I'Treje; Tr' I e;dI’

= I'Te)2.dr > 0.
'/O(p)( P)” -

Hence w;;(er) > 0. Now consider the special case D = I. Then

A

Zo(A) = / ITe Ty T'dlr = / IT'AIT'dI = A.

Henece ¢;(a) = ;. This implies w;y + --+ + wip = 1for 7 =1,...,p. 2 Wi; = 1lis a

consequence of the following lerama.
Lemma 2.3.

(2.18) r(Zo(A)A™Y) = tr D.

Proof:
tr( / ITe DTV T drA™)

= / w(ITy DT I’ A

(2.19)
= / te(Tp DTV (T T') 1)
=/tdeI‘= ir D.
Remark 2.1. The estimator is characterized by the shrinking factor ¢; and c; in turn

is characterized by wi; in (2.17). However because of the lack of linearity (2.17) seems
hard to analyze in general. For czample 1t is not even clear if A > B (:A — B is positive

semidefinite) implics Xo(A) > Xo(B)

§3 Risk.

For Ly the risk can be evaluated in the following fairly simple form and gives a

nice qualitative understanding of its behavior.



Theorem: 3.1.
Ry(%, o) = £{L1(2,.2“0(A))}

P . » B
=~ 3 Elogei(a) — plog2 — 32 (BELT)

=1 i=1 2

(3.1)

where c;(a)’s are the shrinking factors and ¥P(a) = I'(a)/T(a).
Proof: We look at tr =13 term first.

Ex{tr 27153} = Ex(tr T} / I'TyDTr'I'dI)
= / Es(tr M2 ' ITy DTy )T
= / Es-(br ¥ TDT!)dI
(3.2) = / | Expe(tr T'K'™  K~1TD)dI

= / &1(tr T'TD)dT

P
' 2
= Z di€ Xppp—2i41

i=1

‘__.p.

where Z* = I"XTI, T,K € G} with TT' = A, KK’ = X*. Therefore

Ex(tr 21 3o — log det 2_1ﬁ‘0) —p
= —Ex(log det X1 Xy)

P
= -—5:;(2 log(a;c;) — log det X)

=1
: P
(3.3) = -—5;;(2 log ¢; + logdet A — log det X2)
i=1
P P
= —52(2 loge;) — Z logxiﬂ_i
i=1 i=1
p p *
n+l—1
= — Eloge; —plog2 — p{ —————).
; ge; — plog ;1/)( )
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Corollary 3.1.

(3.4) D logd; < ZlogC; < plog() _ di/p),

hence

d; -3 . .
- — plog (%—)—plogz—Z«p(”—%—’—) < Ry(Z, )
3.5

< -—Zlogdi —plog2 — Z'Iﬁ(ﬂg;z)

Proof: We use the concavity of log and Jensen’s inequality.

(3.6) % > logei < log(> ci/p) = log(> di/p).

"This proves the sccond incquality of (3.4). Now

(3.7) logc; = log(wyydy + -+ + wypd,) > Zwij logd,.
.

Adding over different ¢ we obtain
Zlog > Z wi; logd; = Z logd;.
J ©J )

This proves the first inequality. g

It can be easily shown that the right hand side of (3.5) is the minimax risk:
R(X, TDT’). The left hand side of (3.5) gives an absolute bound for the improvement
by using 3. This bound is attained if (3.6) holds with equality, i.e. if ¢; = ... = ¢,.
This happens when oy = --- = ap. Therefore we expect that the largest improvement
occurs when X' = I. Note that when n is small then sample roots fucluate a great deal
and assuming that o;’s are ncarly equal and replacing ¢; by Zd,-/p in (3.6) secms too
optimistic. On the other hand il n is not too small the absolute lower bound for the risk
should be reasonable. Now since Xy is minimax, its risk has to approach the minimax
risk for some X. This corresponds to having the equality in (3.7) for all i. This implies

that W(a) in Theorem 2.3 is a permutation matrix. In the 2-dimensional case this happens

when o;/ag — 0o. In general dimensions it is not easy to say when W(«) approaches a
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permutation matrix but we expect that it corresponds to the case of extreme singularity of

A. Here we present some Monte Carlo results to illustrate these points.

I'irst consider the case X == I. For p = 2 and p = 5 and for selected values of n
we list risk of §, minimax risk, risk of f;'o, and the lower bound given in (3.5). The number
in parentheses after the minimax risk is its percentage to the risk of §. The other numbers

in parentheses are percentages to the minimax risk.

p=2
n  Ryi(S) minimaz Rl(ﬁo) {ower bd
2 2.54 2.25(88.7) 2.07(91.8) 1.97(87.2)
3 1.35  1.23(91.3) 1.14(92.5) 1.12(90.5)
4 .927  .862(93.0) .808(93.7) .798(92.5)
6 571 .543(95.1) .518(95.3) .515(94.8)
10 .324  .314(96.9) .304(97.0) .304(96.8)
15 .210  .206(97.9) .202(97.9) .201(97.8)

p=2>5
n  Ry(S) minimaz Rl(ﬁ'o) lower bd.
5 5.96 4.76(79.9) 3.9(82)  3.06(64.2)
6 3.99 3.28(82.3) 2.73(83.2) 2.41(73.5)
8  2.52 2.17(86.0) 1.88(86.4) 1.78(82.0)
10 1.87 1.65(88.5) 1.47(88.7) 1.43(86.2)
15 1.14 105(9 0) .970(92.1) .959(91.1)

The following serves as a concise summary: (when X = I) the ratio of the risk
of 3o to the minimax risk is roughly equal to the ratio of the minimax risk to the risk
of 8. Also note that the absolute lower bound is realistic for n not too close to p. These

observations hold in our other Monte Carlo results as well.

For p = 5 the estimator 4‘3‘(). itself was calculated by Monte Carlo. It was found
that the replication size for this step need not be too large and the replication size of 100
was used. Actually the estimated risks for the replication sizes 50, 100, 200, and 500, and
for n = 10 were all 1.47 with standard crror about equal to .601 in cach case. I'or more

~on this point see Section 4.
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The remaining question is how X should be close to being singular for the risk to

approach the minimax risk.

For p = 2, the risk depends only on the ratio of two population roots, say,
A =2x1/x2 (Ar < Xg). The following table gives values of the risk for n — 2,7, \U/4 =

1,.2,...,1.0. % means percentage of the risk to the minimax risk.

n=2 n=17
A risk % A risk %
1.0000 2.069 - 91.8 1.0000 0.4400 95.9
0.6561 2.071 91.9 0.6561 0.4402 95.9
0.4096 2.076 92.1 0.4096 0.4409 96.1
0.2401 2.085 92.8 0.2401 0.4421 96.3
0.1296  2.100 93.2 0.1296 0.4439 96.7
0.0625 2.122 94.2 0.0625 0.4464 97.3
0.0256 2.147 95.3 0.0256 0.4496 97.9
0.0081 2.179 ~ 96.7 0.0081 0.4528 98,7
0.0016 2,212  98.2 0.0016 0.41559 99.3
0.0001 2.241 99.5 0.0001 0.4582 99.8

We sce that the risk approaches the minimax risk only when X is very close
to singular. This is a real advantage of using 3. From our other Monte Carlo results
the above seems to hold for general p, namely, Xy is a substantial improvement over the

constant risk minimax estimator for wide range of population covariance matrices.

§4 Proofs and some computational details.

We are going to give some details of the derivation of Therems 2.1and 2.2. First

we notbe the following,

Lemma 4.1.

(4.1) So(A) = 2 I'TeDTY'I'dr

=1

This is straightforward and we omit the proof.
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Proof of Theorem 2.1. By Lemma 4.1 we can represent the uniform distribution on 0(2)
by

cos) —sinf
(4.2) )

sin@ cosf

where 0 is uniformly distributed on [0, 2x]. Since W is doubly stochastic we only need to

calculate wog(ay, ag)=wes(a1/ag,1). Let @ = a1/az and A = diag(a, 1). Then by (2.17)

(4.3) Wez = /(ITI‘)gzd_F= /Igzﬁ‘zzdn

Let I'! be given by (4.2). Then it is casy to obtain szgz\/a/\/a cos2 0 + sin? 0. Hence

2r
1 acos? 6
Wog = — —df
21 Jo o cos2 0 + sin? 0
_ Ve
Va+1

(4.4)

The last equality is veryfied using

do 1 tan 0
(4.5) _ 57 = arctan .
1+ acos?f ita Jita

Proof of Theorem 2.2. We show only some essential steps in the derivation of
(2.18) and (2.14). (2.15) is a consequence of Lemma 2.3. Because of the scale invariance we

can set D=diag(l —e —d,1—e, 1) without loss of generality. Let I = (gij)1<i,j<3- Then

B = (b;j) = I'"AT
1 — agly ~ Beis
= | —agiage2 — Bg13ges 1 — agls — Bads ’
—0gi2g32 — Bg13gss  —Qgazgsz — Bgasgss 1 — agis — Bods

(4.6)

and
(1 —€— d)bll

(4.7) TrDTpI = (l —e — d)b21 ——dbgl/bll + (1 —_ e)bgg ’
(1 — d)bgl ——dbglbgl/bu + (l - e)b32 —dbgl/bu — ev + b3
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where

bir b\ “l/b
v = (b bsz)( 11 21) ( 31)
bay  bao b3a
_ B8iban + b3ab11 — 2631 b35bg
b11b2g — b3,

— 932923 (a — B)? + 95195021 — B) + 93,95, 8%(1 —- @)
1~ a(l—g8) - B(1- g%;) + afgl;

(4.8)

We used the fact

931 = A} = (g12g23 — 922913)%,
because (g;;) =" = ! — (Ai)/[I = (Ay;). Now the denominator of v can be wrilten
as follows and then can be expanded in an infinite series.

1—oft - 9:32) - p(1 - g§3) + aﬂqgl

(4.9) = (1 —a)(1 — B¢, — f 0932)

Similarly 1/6y1 = 1/(1 —agf, — Bg?;) can be expanded. To evaluate the integral we use the
fact that (¢2,, 9%, g%,) is distributed according to the Dirichlet distribution with parametlers
(%, %,%) One more thing needed is the following expectation fg“glg_;“gggdl“ This
can be evaluated by noting (911921 + g12922)? = 993955 and hence 2. 911912921 920dl" =
—J o3

For a special case where two of the roots coincide we have the following result.

For a 54 1

bi(1,,) = dy — —%—{(dy — dy)ly — 1)+ (dy — (T — 1),
(4.10) P2l a) = ¢5(1, @, 0)

a(dl + d2) ds —d, day 2 dz — dy 2
— _ R - § A
2 2 ' 2a 1)( - )+2(a—1)(°‘ 2~ 1),

where Ip(a) = I1(1/a)/a and

—J—laa__?l‘_:‘)* if a <1,
g(‘/_""'“— ) if a>1.

2 a(a—-l

Il(a) =
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We sketch the proof of this. Putting @ = f in (4.6) and (4.8) and replacing @ by 1 — & we

oblain

by =1—(1—0a)(1—g%)=a+(l— )
(4.11) v = (e —1)*(1 — g3,)98, )
1+ (a—1)g%,

After polynomial devision we are left with [(a + (1 — a)g?,)"'dI, [(1 + (@ — 1)g3,)'dI"
and other terms are polynomial terms in g;;. Now after appropriate transformation we
obtain

. _
/(a+(1—a)gf1)“1df=/o gj(—?;‘aﬁ = I)(a).

1

oz = 21‘1(1) = Iy(a)

Jur@-ngytar= [ =

I, I; are given in (4.10). The rest of the computation is straightforward.

Now we discuss Monte Carlo methods to calculate ﬁ‘o for general dimensionality.
One objection to the estimator ﬁo might be that it is expensive to compute for large
p. However as mentioned in Sec.t;ion 3 our Monte Carlo results show that the size of the
replications to obtain the estimator need not be too large (at least frorn the viewpoint
of improved risk). For p = 5, 50 replications practically achieves the same risk as >o.
Uniform orthogonal matrices can be generated by the Gram-Schmidt orthogonalization of
columns of a matrix whose elements are indepcndent standard normal variables. This is
described in Chapter 8 of Lehmann(1959). Also note that there is a subtle problem in the
application of Monte Carlo method: (i) either we apply (2.8) directly for A,(ii) or we use
(2.10) first and apply (2.8) for A discarding the off diagonal elements. From logical point of
view (i) is legitimate. Tinite averaging itsell improves the constant risk minimax estimator.
Therefore for the purpose of risk comparison this method was used in Section 3 for the case
p =5 and X = I. On the other hand (2.10) does not exactly hold with simulated uniform
distribution. From practical viewpoint, however, the latter seems to be a reasonable thing
to do. Another point is that if the size of Monte Carlo is not big enough, we sometimes
obtain ¢; < ¢; even when a; > oy . If this happens, cither the simulation size should be

increased or correction of the ordering should be copsidered.
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